Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(2): 1064-1075, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38163761

ABSTRACT

Perfluoro-2-methoxyacetic acid (PFMOAA) is a short-chain perfluoroalkyl ether carboxylic acid that has been detected at high concentrations (∼10 µg/L) in drinking water in eastern North Carolina, USA, and in human serum and breastmilk in China. Despite documented human exposure there are almost no toxicity data available to inform risk assessment of PFMOAA. Here we exposed pregnant Sprague-Dawley rats to a range of PFMOAA doses (10-450 mg/kg/d) via oral gavage from gestation day (GD) 8 to postnatal day (PND) 2 and compared results to those we previously reported for perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). Newborn pups displayed reduced birthweight (≥30 mg/kg), depleted liver glycogen concentrations (all doses), hypoglycemia (≥125 mg/kg), and numerous significantly altered genes in the liver associated with fatty acid and glucose metabolism similar to gene changes produced by HFPO-DA. Pup survival was significantly reduced at ≥125 mg/kg, and at necropsy on PND2 both maternal and neonatal animals displayed increased liver weights, increased serum aspartate aminotransferase (AST), and reduced serum thyroid hormones at all doses (≥10 mg/kg). Pups also displayed highly elevated serum cholesterol at all doses. PFMOAA concentrations in serum and liver increased with maternal oral dose in both maternal and F1 animals and were similar to those we reported for PFOA but considerably higher than HFPO-DA. We calculated 10% effect levels (ED10 or EC10) and relative potency factors (RPF; PFOA = index chemical) among the three compounds based on maternal oral dose and maternal serum concentration (µM). Reduced pup liver glycogen, increased liver weights and reduced thyroid hormone levels (maternal and pup) were the most sensitive end points modeled. PFMOAA was ∼3-7-fold less potent than PFOA for most end points based on maternal serum RPFs, but slightly more potent for increased maternal and pup liver weights. PFMOAA is a maternal and developmental toxicant in the rat producing a constellation of adverse effects similar to PFOA and HFPO-DA.


Subject(s)
Caprylates , Fluorocarbons , Liver Glycogen , Propionates , Pregnancy , Humans , Female , Rats , Animals , Rats, Sprague-Dawley , Fluorocarbons/toxicity , Lactation , Thyroid Hormones , Maternal Exposure
2.
Geohealth ; 7(12): e2022GH000716, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38155731

ABSTRACT

The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.

3.
Sci Total Environ ; 892: 164609, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37271399

ABSTRACT

Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Animals , Humans , Male , Female , Adult , Maternal Exposure/adverse effects , Rats, Sprague-Dawley , Prenatal Exposure Delayed Effects/chemically induced , Fluorocarbons/toxicity , Alkanesulfonic Acids/toxicity
4.
Sci Total Environ ; 868: 161672, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36657670

ABSTRACT

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , United States , Humans , Iowa , Water Pollutants, Chemical/analysis , Agriculture , Environmental Monitoring/methods
5.
Environ Int ; 171: 107701, 2023 01.
Article in English | MEDLINE | ID: mdl-36542998

ABSTRACT

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Subject(s)
Drinking Water , Volatile Organic Compounds , Water Pollutants, Chemical , Humans , United States , Water Supply , Environmental Exposure/adverse effects , Water Pollutants, Chemical/analysis
6.
Environ Int ; 170: 107631, 2022 12.
Article in English | MEDLINE | ID: mdl-36402036

ABSTRACT

Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.


Subject(s)
Maternal Exposure , Animals , Female , Pregnancy , Rats , Rats, Sprague-Dawley , Maternal Exposure/adverse effects
7.
ACS ES T Water ; 2(10): 1772-1788, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277121

ABSTRACT

In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.

8.
Toxicol Appl Pharmacol ; 449: 116136, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35752307

ABSTRACT

Data demonstrate numerous per- and polyfluoroalkyl substances (PFAS) activate peroxisome proliferator-activated receptor alpha (PPARα), however, additional work is needed to characterize PFAS activity on PPAR gamma (PPARγ) and other nuclear receptors. We utilized in vitro assays with either human or rat PPARα or PPARγ ligand binding domains to evaluate 16 PFAS (HFPO-DA, HFPO-DA-AS, NBP2, PFMOAA, PFHxA, PFOA, PFNA, PFDA, PFOS, PFBS, PFHxS, PFOSA, EtPFOSA, and 4:2, 6:2 and 8:2 FTOH), 3 endogenous fatty acids (oleic, linoleic, and octanoic), and 3 pharmaceuticals (WY14643, clofibrate, and the metabolite clofibric acid). We also tested chemicals for human estrogen receptor (hER) transcriptional activation. Nearly all compounds activated both PPARα and PPARγ in both human and rat ligand binding domain assays, except for the FTOH compounds and PFOSA. Receptor activation and relative potencies were evaluated based on effect concentration 20% (EC20), top percent of max fold induction (pmaxtop), and area under the curve (AUC). HFPO-DA and HFPO-DA-AS were the most potent (lowest EC20, highest pmaxtop and AUC) of all PFAS in rat and human PPARα assays, being slightly less potent than oleic and linoleic acid, while NBP2 was the most potent in rat and human PPARγ assays. Only PFHxS, 8:2 and 6:2 FTOH exhibited hER agonism >20% pmax. In vitro measures of human and rat PPARα and PPARγ activity did not correlate with oral doses or serum concentrations of PFAS that induced increases in male rat liver weight from the National Toxicology Program 28-d toxicity studies. Data indicate that both PPARα and PPARγ activation may be molecular initiating events that contribute to the in vivo effects observed for many PFAS.


Subject(s)
Fluorocarbons , PPAR alpha , Animals , Fatty Acids , Female , Fluorocarbons/toxicity , Ligands , Male , PPAR alpha/genetics , PPAR gamma , Rats , Receptors, Estrogen
9.
Environ Int ; 160: 107056, 2022 02.
Article in English | MEDLINE | ID: mdl-34952357

ABSTRACT

Nafion byproduct 2 (NBP2) is a polyfluoroalkyl ether sulfonic acid that was recently detected in surface water, drinking water, and human serum samples from monitoring studies in North Carolina, USA. We orally exposed pregnant Sprague-Dawley rats to NBP2 from gestation day (GD) 14-18 (0.1-30 mg/kg/d), GD17-21, and GD8 to postnatal day (PND) 2 (0.3-30 mg/kg/d) to characterize maternal, fetal, and postnatal effects. GD14-18 exposures were also conducted with perfluorooctane sulfonate (PFOS) for comparison to NBP2, as well as data previously published for hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). NBP2 produced stillbirth (30 mg/kg), reduced pup survival shortly after birth (10 mg/kg), and reduced pup body weight (10 mg/kg). Histopathological evaluation identified reduced glycogen stores in newborn pup livers and hepatocyte hypertrophy in maternal livers at ≥ 10 mg/kg. Exposure to NBP2 from GD14-18 reduced maternal serum total T3 and cholesterol concentrations (30 mg/kg). Maternal, fetal, and neonatal liver gene expression was investigated using RT-qPCR pathway arrays, while maternal and fetal livers were also analyzed using TempO-Seq transcriptomic profiling. Overall, there was limited alteration of genes in maternal or F1 livers from NBP2 exposure with significant changes mostly occurring in the top dose group (30 mg/kg) associated with lipid and carbohydrate metabolism. Metabolomic profiling indicated elevated maternal bile acids for NBP2, but not HFPO-DA or PFOS, while all three reduced 3-indolepropionic acid. Maternal and fetal serum and liver NBP2 concentrations were similar to PFOS, but ∼10-30-fold greater than HFPO-DA concentrations at a given maternal oral dose. NBP2 is a developmental toxicant in the rat, producing neonatal mortality, reduced pup body weight, reduced pup liver glycogen, reduced maternal thyroid hormones, and altered maternal and offspring lipid and carbohydrate metabolism similar to other studied PFAS, with oral toxicity for pup loss that is slightly less potent than PFOS but more potent than HFPO-DA.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Animals , Female , Fluorocarbon Polymers , Fluorocarbons/toxicity , Oxides , Pregnancy , Rats , Rats, Sprague-Dawley
10.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134358

ABSTRACT

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Environmental Monitoring , Humans , Puerto Rico , Water , Water Pollutants, Chemical/analysis
11.
Environ Int ; 156: 106615, 2021 11.
Article in English | MEDLINE | ID: mdl-34000504

ABSTRACT

Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.


Subject(s)
Pesticides , Animals , Female , Genitalia, Male , Male , No-Observed-Adverse-Effect Level , Pesticides/toxicity , Pregnancy , Rats , Rats, Sprague-Dawley , Reproduction , Testis
12.
Sci Total Environ ; 768: 144750, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736315

ABSTRACT

Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17ß-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biological Assay , Chicago , Endocrine Disruptors/analysis , Environmental Monitoring , Estrogens/analysis , Michigan , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality
13.
Environ Int ; 152: 106487, 2021 07.
Article in English | MEDLINE | ID: mdl-33752165

ABSTRACT

BACKGROUND: Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS: We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS: Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION: These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION: Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Humans , Massachusetts , United States , Water , Water Pollutants, Chemical/analysis , Water Supply
14.
Environ Int ; 146: 106204, 2021 01.
Article in English | MEDLINE | ID: mdl-33126064

ABSTRACT

Hexafluoropropylene oxide dimer acid (HFPO-DA or GenX) is an industrial replacement for the straight-chain perfluoroalkyl substance (PFAS), perfluorooctanoic acid (PFOA). Previously we reported maternal, fetal, and postnatal effects from gestation day (GD) 14-18 oral dosing in Sprague-Dawley rats. Here, we further evaluated the perinatal toxicity of HFPO-DA by orally dosing rat dams with 1-125 mg/kg/d (n = 4 litters per dose) from GD16-20 and with 10-250 mg/kg/d (n = 5) from GD8 - postnatal day (PND) 2. Effects of GD16-20 dosing were similar to those previously reported for GD14-18 dosing and included increased maternal liver weight, altered maternal serum lipid and thyroid hormone concentrations, and altered expression of peroxisome proliferator-activated receptor (PPAR) pathway genes in maternal and fetal livers. Dosing from GD8-PND2 produced similar effects as well as dose-responsive decreased pup birth weight (≥30 mg/kg), increased neonatal mortality (≥62.5 mg/kg), and increased pup liver weight (≥10 mg/kg). Histopathological evaluation of newborn pup livers indicated a marked reduction in glycogen stores and pups were hypoglycemic at birth. Quantitative gene expression analyses of F1 livers revealed significant alterations in genes related to glucose metabolism at birth and on GD20. Maternal serum and liver HFPO-DA concentrations were similar between dosing intervals, indicating rapid clearance, however dams dosed GD8 - PND2 had greater liver weight and gestational weight gain effects at lower doses than GD16-20 dosing, indicating the importance of exposure duration. Comparison of neonatal mortality dose-response curves between HFPO-DA and previously published perfluorooctane sulfonate (PFOS) data indicated that, based on serum concentration, the potency of these two PFAS are similar in the rat. Overall, HFPO-DA is a developmental toxicant in the rat and the spectrum of adverse effects is consistent with prior PFAS toxicity evaluations, such as PFOS and PFOA.


Subject(s)
Fluorocarbons , Oxides , Animals , Birth Weight , Female , Fluorocarbons/toxicity , Glucose , Hepatomegaly , Infant Mortality , Lipid Metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
15.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32126404

ABSTRACT

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Subject(s)
Water Purification , Chicago , Drinking Water , Michigan , Pesticides , United States , Water Pollutants, Chemical
16.
Sci Total Environ ; 699: 134297, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31683213

ABSTRACT

Although endocrine disrupting compounds have been detected in wastewater and surface waters worldwide using a variety of in vitro effects-based screening tools, e.g. bioassays, few have examined potential attenuation of environmental contaminants by both natural (sorption, degradation, etc.) and anthropogenic (water treatment practices) processes. This study used several bioassays and quantitative chemical analyses to assess residence-time weighted samples at six sites along a river in the northeastern United States beginning upstream from a wastewater treatment plant outfall and proceeding downstream along the stream reach to a drinking water treatment plant. Known steroidal estrogens were quantified and changes in signaling pathway molecular initiating events (activation of estrogen, androgen, glucocorticoid, peroxisome proliferator-activated, pregnane X receptor, and aryl hydrocarbon receptor signaling networks) were identified in water extracts. In initial multi-endpoint assays geographic and receptor-specific endocrine activity patterns in transcription factor signatures and nuclear receptor activation were discovered. In subsequent single endpoint receptor-specific bioassays, estrogen (16 of 18 samples; 0.01 to 28 ng estradiol equivalents [E2Eqs]/L) glucocorticoid (3 of 18 samples; 1.8 to 21 ng dexamethasone equivalents [DexEqs]/L), and androgen (2 of 18 samples; 0.95 to 2.1 ng dihydrotestosterone equivalents [DHTEqs]/L) receptor transcriptional activation occurred above respective assay method detection limits (0.04 ng E2Eqs/L, 1.2 ng DexEqs/L, and 0.77 ng DHTEqs/L) in multiple sampling events. Estrogen activity, the most often detected, correlated well with measured concentrations of known steroidal estrogens (r2 = 0.890). Overall, activity indicative of multiple types of endocrine active compounds was highest in wastewater effluent samples, while activity downstream was progressively lower, and negligible in unfinished treated drinking water. Not only was estrogenic and glucocorticoid activity confirmed in the effluent by utilizing multiple methods concurrently, but other activated signaling networks that historically received less attention (i.e. peroxisome proliferator-activated receptor) were also detected.


Subject(s)
Biological Assay , Endocrine Disruptors/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Androgens , Basic Helix-Loop-Helix Transcription Factors , Estradiol , Estrogens , Estrone , New England , Receptors, Aryl Hydrocarbon , Rivers , Wastewater/chemistry , Water Purification
17.
Environ Health Perspect ; 127(3): 37008, 2019 03.
Article in English | MEDLINE | ID: mdl-30920876

ABSTRACT

BACKGROUND: Hexafluoropropylene oxide dimer acid [(HFPO-DA), GenX] is a member of the per- and polyfluoroalkyl substances (PFAS) chemical class, and elevated levels of HFPO-DA have been detected in surface water, air, and treated drinking water in the United States and Europe. OBJECTIVES: We aimed to characterize the potential maternal and postnatal toxicities of oral HFPO-DA in rats during sexual differentiation. Given that some PFAS activate peroxisome proliferator-activated receptors (PPARs), we sought to assess whether HFPO-DA affects androgen-dependent development or interferes with estrogen, androgen, or glucocorticoid receptor activity. METHODS: Steroid receptor activity was assessed with a suite of in vitro transactivation assays, and Sprague-Dawley rats were used to assess maternal, fetal, and postnatal effects of HFPO-DA exposure. Dams were dosed daily via oral gavage during male reproductive development (gestation days 14-18). We evaluated fetal testes, maternal and fetal livers, maternal serum clinical chemistry, and reproductive development of F1 animals. RESULTS: HFPO-DA exposure resulted in negligible in vitro receptor activity and did not impact testosterone production or expression of genes key to male reproductive development in the fetal testis; however, in vivo exposure during gestation resulted in higher maternal liver weights ([Formula: see text]), lower maternal serum thyroid hormone and lipid profiles ([Formula: see text]), and up-regulated gene expression related to PPAR signaling pathways in maternal and fetal livers ([Formula: see text]). Further, the pilot postnatal study indicated lower female body weight and lower weights of male reproductive tissues in F1 animals. CONCLUSIONS: HFPO-DA exposure produced multiple effects that were similar to prior toxicity evaluations on PFAS, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but seen as the result of higher oral doses. The mean dam serum concentration from the lowest dose group was 4-fold greater than the maximum serum concentration detected in a worker in an HFPO-DA manufacturing facility. Research is needed to examine the mechanisms and downstream events linked to the adverse effects of PFAS as are mixture-based studies evaluating multiple PFAS. https://doi.org/10.1289/EHP4372.


Subject(s)
Fluorocarbons/adverse effects , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/pathology , Sex Differentiation/drug effects , Soil Pollutants/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , Female , Fetus/drug effects , Fetus/pathology , Fetus/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Sprague-Dawley
18.
Toxicol Sci ; 168(1): 252-263, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30535411

ABSTRACT

Many glucocorticoid receptor (GR) agonists have been detected in waste and surface waters domestically and around the world, but the way a mixture of these environmental compounds may elicit a total glucocorticoid activity response in water samples remains unknown. Therefore, we characterized 19 GR ligands using a CV1 cell line transcriptional activation assay applicable to water quality monitoring. Cells were treated with individual GR ligands, a fixed ratio mixture of full or partial agonists, or a nonequipotent mixture with full and partial agonists. Efficacy varied (48.09%-102.5%) and potency ranged over several orders of magnitude (1.278 × 10-10 to 3.93 × 10-8 M). Concentration addition (CA) and response addition (RA) mixtures models accurately predicted equipotent mixture responses of full agonists (r2 = 0.992 and 0.987, respectively). However, CA and RA models assume mixture compounds produce full agonist-like responses, and therefore they overestimated observed maximal efficacies for mixtures containing partial agonists. The generalized concentration addition (GCA) model mathematically permits < 100% maximal responses, and fell within the 95% confidence interval bands of mixture responses containing partial agonists. The GCA, but not CA and RA, model predictions of nonequipotent mixtures containing both full and partial agonists fell within the same statistical distribution as the observed values, reinforcing the practicality of the GCA model as the best overall model for predicting GR activation. Elucidating the mechanistic basis of GR activation by mixtures of previously detected environmental GR ligands will benefit the interpretation of environmental sample contents in future water quality monitoring studies.


Subject(s)
Biological Assay/methods , Glucocorticoids/metabolism , Models, Biological , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/metabolism , Corticosterone/pharmacology , Desoxycorticosterone/pharmacology , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Drug Partial Agonism , Ligands , Prednisolone/pharmacology , Transcriptional Activation
19.
Environ Sci Technol ; 51(16): 9327-9333, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28708939

ABSTRACT

The high throughput screening of chemicals for interaction with intracellular targets is gaining prominence in the toxicity evaluation of environmental chemicals. We describe ligand-mediated receptor assembly as an early event in receptor signaling and its application to the screening of chemicals for interaction with targeted receptors. We utilized bioluminescence resonance energy transfer (BRET) to detect and quantify assembly of the methyl farnesoate receptor (MfR) in response to various high-production volume and other chemicals. The hormone methyl farnesoate binds to the MfR to regulate various aspects of reproduction and development in crustaceans. The MfR protein subunits Met and SRC, cloned from Daphnia pulex, were fused to the fluorophore, mAmetrine and the photon generator, Rluc2, respectively. Ligand-mediated receptor assembly was measured by photon transfer from the photon donor to the fluorophore resulting in fluorescence emission. Overall, the BRET assay had comparable or greater sensitivity as compared to a traditional reporter gene assay. Further, chemicals that screened positive in the BRET assay also stimulated phenotypic outcomes in daphnids that result from MfR signaling. We concluded the BRET assay is an accurate, sensitive, and cost/time efficient alternative to traditional screening assays.


Subject(s)
Daphnia , Genes, Reporter , Ligands , Water Pollutants, Chemical/toxicity , Animals , Energy Transfer , Reproduction , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...